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Abstract. Strategies involving smoothing of the objective function have been used to help solve
difficult global optimization problems arising in molecular chemistry. This paper proposes a new
smoothing approach and examines some basic issues in smoothing for molecular configuration prob-
lems. We first propose a new, simple algebraic way of smoothing the Lennard-Jones energy function,
which is an important component of the energy in many molecular models. This simple smoothing
technique is shown to have close similarities to previously-proposed, spatial averaging smoothing
techniques. We also present some experimental studies of the behavior of local and global minimizers
under smoothing of the potential energy in Lennard-Jones problems. An examination of minimizer
trajectories from these smoothed problems shows significant limitations in the use of smoothing to
directly solve global optimization problems.
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1. Introduction

The topic of this research is the development of new smoothing methods for large-
scale global optimization problems arising in molecular chemistry applications.
Molecular conformation problems give rise to very difficult global optimization
problems, and smoothing is a technique that has been used in the chemistry and
optimization communities to aid in their solution. Our overall approach is to de-
velop new smoothing techniques that are both effective and inexpensive, and also
to consider the integration of smoothing with sophisticated global optimization
algorithms.

This paper describes the first stage of this research, the development of new
smoothing methods to solve the Lennard-Jones problem. The Lennard-Jones prob-
lem is an important molecular conformation test problem for two reasons. First,
the problem is a very difficult global optimization problem, since it is believed that
the number of its minima grows exponentially asO(eN

2
) [12], and many minima
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have energy values near the global minimum. Secondly, its objective function, the
Lennard-Jones potential energy function, commonly exists within other molecular
conformation problems, such as protein folding problems. In part for this reason,
the techniques developed in this paper can also be used in smoothing a wide range
of molecular conformation problems including protein folding problems.

The Lennard-Jones problem is to find the minimum energy structure of a cluster
ofN identical atoms using the Lennard-Jones potential energy. That is, the problem
assumes that the potential energy of the cluster is given by the sum of the pairwise
interactions between atoms, with these interactions being Van der Waals forces
given by the Lennard-Jones 6–12 potential

p(r) = 1

r12
− 2 ∗ 1

r6
(1)

wherer is the distance between two atoms. This potential represents a repulsive-
attractive force that is very repulsive at very short distances, most attractive at an
intermediate distance, and a very weak attractive force at longer distances. In this
formulation, the pairwise equilibrium distance (distance of greatest attraction) is
scaled to 1, and the pairwise minimum energy is scaled to−1. If we define the
position of the cluster by

x = (x1, x2, . . . , xN )

wherexi is a three dimensional vector denoting the coordinates of theith atom,
then the overall potential energy function is

f (x) =
N∑
i=2

i−1∑
j=1

p(dij ) =
N∑
i=2

i−1∑
j=1

[
1

dij
12 − 2 ∗ 1

dij
6

]
(2)

wheredij is the Euclidean distance betweenxi and xj . We can now denote the
problem as

LJ : min
x∈D f (x) (3)

wheref (x) is function (2) andD is some closed region inRn, n = 3N . This prob-
lem has been the target of many different computational approaches, such as [2,
7, 9–13, 15, 16, 20, 23–25, 27] that make varying amounts of use of the solution
structure of Lennard Jones clusters. A large scale global optimization algorithm
that does not utilize the solution structure of the clusters has been developed in past
few years by [2], and has successfully solved all Lennard-Jones problems with up
to 76 atoms.

In practice, interesting molecular conformation problems contain at least 1,000
to 10,000 atoms, and huge numbers of local minimizers. It is expected that it will
generally be too expensive to solve problems of such size by using global op-
timization algorithms directly on the objective function. This realization motivates
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approaches that seek to improve the effectiveness of global optimization algorithms
via transformations of the objective (energy) function.

One transformation method is to use a parameterized set ofsmoothedobjective
functions. The smoothed functions are intended to retain the coarse structure of the
original objective function, but have fewer local minimizers. By selecting different
smoothing parameters, objective functions with different degrees of smoothness
can be derived. The intent is to first solve the global optimization problem on very
smooth problems, and then use this solution to gradually solve the problem on less
smooth problems and ultimately the original, unsmoothed problem. The connec-
tions between the smoothed problems and the original problems are characterized
by trajectoriesof minima in the space of the smoothing parameter(s). Along the
trajectories, each point is a minimizer of a smoothed problem with some specific
smoothing parameter setting. Usually, one end of the trajectory is a minimizer of
the original problem. That is, once a minimizer of a smoothed problem is found,
its trajectory usually leads to a corresponding minimizer of the original problem.
If a problem isstrongly scaled, as defined in [17], the trajectory from the global
minimizer of a very smoothed problem leads directly to the global minimizer of
the original problem. It is also quite possible, however, that the trajectory from the
global minimizer of a very smoothed problem will not lead to the global minimizer
of the original problem. Indeed, this paper will show that the latter situation appears
to be common in Lennard-Jones problems.

At least three distinct smoothing methods have been proposed and applied to
Lennard-Jones problems recently. These are the diffusion equation method [14],
the effective energy method [6, 7, 20], and the effective energy transformation
scheme [8, 26]. All of the above methods transform the original function into a
family of smoothed functions via integration of the original objective function.
Such integrations are too expensive to compute at run time. For use in global op-
timization algorithms, either some approximations must be employed, or look-up
tables have to be computed in advance. These smoothing functions are described
in Section 2 of this paper.

In Section 3 of this paper, a new family of smoothing functions is introduced. As
opposed to previous methods, the new functions do not use integrations. Instead,
the transformation is performed directly in an algebraic form. Another important
difference between the new method and previous methods is that our transforma-
tion is specially designed to be applied on Lennard-Jones-like functions. We will
show, however, that the techniques that are introduced also apply to other important
functions, and that they allow our techniques to be applied to many important
empirical energy functions, such as the common empirical energy functions for
proteins.

In order to employ the smoothing techniques to solve global optimization prob-
lems, it is crucial to understand the behaviors of minimizer trajectories in smooth-
ing parameter space. Section 4 of this paper summarizes some basic properties of
minimizer trajectories. In Section 5, we discuss the design and results of experi-
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ments applied to both the integral form smoothing functions and the new algebraic
smoothing functions. The results of experiments show that tested smoothing tech-
niques have several common behaviors. Importantly, these behaviors imply that
there are significant limitations to global optimization algorithms that use simple
trajectory tracking approaches.

2. Spatial Averaging Smoothing Techniques

The basic idea of smoothing is to soften the original function by reducing ab-
rupt function value changes while retaining the coarser structure of the original
function. In other words, smoothing dampens high gradient values and fine grain
fluctuations in the original function. As a result, nearby minimizers will merge after
sufficient smoothing is applied to remove the barriers between them. Therefore,
smoothing reduces the total number of minima in the problem.

The Lennard-Jones pairwise potential (1) has a pole at distance zero, and thus
very large derivative values for distances near zero. The pole and large gradient
values create huge barriers that separate similarly structured minimizers in the
Lennard-Jones problems. This is a fundamental reason why the Lennard-Jones
problem, as well as more complex problems that include the Lennard-Jones poten-
tial or similar ones, have so many minima. A Lennard-Jones smoothing technique
should remove these high energetic barriers in some effective way.

In general, a smoothing technique is based upon a family of functions that is
parameterized over a smoothing parameter or a set of smoothing parameters to
generate different smoothnesses. Such a family can be represented as

f̃s : D→ R, s ∈ S (4)

whereD is some closed region inRn, m is the number of smoothing parameters,
andS is some subregion ofRm. By varying the smoothing parameter sets, one
can create a series of functions that gradually smoothes the original function. For
the Lennard-Jones problem, a family of smoothed Lennard-Jones problems can be
constructed,

LJ s : min
x∈D

f̃s(x) (5)

wheres is some smoothing parameter set andf̃s is a smoothed Lennard-Jones
potential function. The intent is that the number of minima is reduced gradually as
the objective functions become smoother.

A general smoothing technique, called spatial averaging, has been studied in
various ways in [6, 7, 8, 14, 20, 26]. The fundamental idea of this technique is
that the smoothed function value at each point is given by a weighted average of
the energy function in a neighborhood of this point determined by a distribution
function centered at this point. The Gaussian distribution function is commonly
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used. In this case, the smoothing transformation is

f̃s(x) =
∫
H(f (x′), s′) · exp

(−‖x − x′‖2
λ2

)
dx′ (6)

whereλ ands′ together constitute the smoothing parameter set,s. The parameter
λ determines the scale of the Gaussian distribution, while the parameters′ is used
within the functionH to transform the original functionf (x) into a function that
has no poles. The transformationH(f, s′) is necessary to make the function in-
tegrable. Without this transformation, the Lennard-Jones potential is not integrable
due to the infinite value at zero distance. The cost of performing the multidimen-
sional integral (6) is reasonable due to the partially separable form of the objective
(2).

Two families of smoothing functions using the spatial averaging technique, the
diffusion equation method [14] and the effective energy transformation scheme
[26], are experimented within this paper to compare them with the new function
family. Both families are based on function (6), however, they differ in how the
transformationH(f, s′) is performed. The rest of the section briefly discusses these
two families of smoothing functions.

Diffusion Equation Method. The diffusion equation method [14] transforms a
function to be minimized according to a partial differential equation. In this paper,
the function to be transformed is the Lennard-Jones potentialf (x) in (2). The
method is applied by solving the diffusion equation

1F = ∂F/∂t t > 0 (7)

for F(x, t), where1 is the Laplacian operator with

F(x,0) = f (x). (8)

The parametert takes on the meaning of time.
If the Lennard-Jones potentialf (x) is viewed as an initial temperature field in

(8), the solution of Equation (7),F(x, t), can be seen as expressing how the temper-
ature field reaches an equilibrium state through time. This process is equivalent to
a spatial averaging process, andF(x, t) can be regarded as a family of functions of
x parameterized byt . As t increases, smoother functions are obtained. Eventually,
beyond some timet∗, the temperature field becomes uniform. The parametert

is a smoothing parameter for our purpose, wheret = 0 represents the original
Lennard-Jones potential andt = t∗ gives the smoothest function.

Equation (7) has an analytical solution

F(x, t) = [2(πt)1/2]−n ∫
Rn
f (y) · exp

(
− 1

4t
‖x − y‖2

)
dy (9)

where‖x − y‖ is the length of the vector ofx − y. There are two difficulties
in applying the above integration to the Lennard-Jones potential (2). First, the
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Lennard-Jones potential contains infinite poles which make (9) non-integratable.
Secondly, it would be costly to evaluate the integration numerically if an analytical
formula were not available.

To overcome these difficulties, the diffusion equation method uses a sum of
Gaussians to approximate the Lennard-Jones pairwise potential (1) throughout the
region of physical interest,

p(r) ≈
L∑
k=1

ak · exp(−bkr2) (10)

whereL is large enough to describe the potential accurately. Reference [14] shows
that two terms are sufficient to approximate the Lennard-Jones pairwise potential
within the interesting physical range. However, it is necessary to add a third term to
ensure that the energy surface will only contain one minimum at a highly smoothed
level before it becomes completely uniform. Therefore,L = 3 is used for experi-
ments in both [14] and this paper. Using (10), the full Lennard-Jones potential is
approximated by

f (x) ≈
N∑
i=2

i−1∑
j=1

L∑
k=1

ak · exp(−bk‖xi − xj‖2) (11)

which no longer contains poles. This approximation is the transformationH in
Equation (6).

By substituting (11) into (9), it is straightforward to solve the integration. The
solution of (9) is a family of smoothing functions for the Lennard-Jones potential,

f̃t (x) =
i∑
i=2

i−1∑
j=1

Uij (dij , t) (12)

where

Uij (dij , t) =
L∑
k=1

ak(1+ 8bkt)
− 3

2 · exp

( −bkd2
ij

1+ 8bkt

)
(13)

anddij = ‖xi − xj‖. Now, function (13) can be practically evaluated in global
optimization computations.

Effective Energy Transformation Scheme.Unlike the diffusion equation
method, the effective energy transformation scheme [26] directly smoothes a func-
tion by using spatial averaging. The transformation is similar to (6),

f̃λ(x) = Cλ
∫
f (x′) · exp

(−‖x − x′‖2
λ2

)
dx′, (14)
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whereλ is a positive number andCλ is a normalization constant such that

Cλ

∫
exp

(−‖x‖2
λ2

)
dx = 1. (15)

Due to the integration in (14), the effective energy transformation has the same
difficulties as the diffusion equation method. However, the effective energy trans-
formation scheme chooses another approach to solve the difficulties. In [26], it
shows that if the objective function is partially separable, (14) is also partially
separable and the computation will be much simpler. Since the Lennard-Jones
potential (2) is a partially separable function, the transformation (14) can be applied
on the Lennard-Jones potential:

f̃λ(x) = Cλ
∫  N∑

i=2

i−1∑
j=1

p(‖rij‖)
 · exp

(−‖x − x′‖2
λ2

)
dx′ (16)

=
N∑
i=2

i−1∑
j=1

< p >√2λ

(‖rij‖) (17)

whererij = xi − xj and

< p >√2λ

(‖rij‖) = C√2λ

∫
p(‖r ′ij‖) · exp

(
−‖rij − r

′
ij‖2

2λ2

)
dr ′ij . (18)

From (16) to (17), a multi-dimension integration becomes a summation of one-
dimensional integrations.

In (18), the pairwise potential,p, still contains a pole atr = 0. One has to
remove this pole from functionp for (18) to be integratable. To solve this difficulty,
the effective energy transformation scheme replaces the pairwise potentialp with

p′(r) =
{
p(r), r > rmin

ha + hb ·
√

1− r2/r2
a , r < rmin

(19)

wherermin is a cutoff distance determined by a chosen cutoff value onp(x), and
ha, hb andra are constants determined such that the two functions in (19) connect
smoothly atr = rmin. By replacingp with p′, (18) becomes integratable with
functionp′.

In contrast to the diffusion equation method, the integral in (18), withp′(r)
replacingp(r), is still not analytically integrable. To avoid the expense of evalu-
ating this integral numerically at runtime for each value ofr, the effective energy
transformation scheme, therefore, evaluates the integral at many (200 perλ value)
points in advance and creates a two-dimensional lookup table, with parametersr

andλ. In global optimization computations, all function evaluations are computed
through interpolating the data in the lookup table with cubic splines.
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3. A New Family of Smoothing Functions

In this section we introduce a new, algebraic method of smoothing the Lennard-
Jones potential energy function and compare the characteristics of this method with
the spatial averaging approach.

The new family of smoothing functions for the Lennard-Jones pairwise poten-
tial is

p̃(r, P, γ ) =
(

1+ γ
rP + γ

)2

− 2 ∗
(

1+ γ
rP + γ

)
(20)

wherer is the distance between atoms, andγ andP are the two smoothing para-
meters. This equation is equal to the original Lennard-Jones pairwise potential (1)
whenγ = 0 andP = 6. For any values ofγ >= 0 and P > 0, it attains its
minimum value of−1 at r = 1, as does the Lennard-Jones pairwise potential.
Furthermore, function (20) only contains simple algebraic computations, and is
nearly as inexpensive to evaluate as the original Lennard-Jones pairwise potential
(1).

From (20), we can define the family of smoothed Lennard-Jones potentials as

f̃<P,γ>(x) =
N∑
i=1

i−1∑
j=2

p̃<P,γ>(dij ) (21)

and the smoothed Lennard-Jones problem by

LJ<P,γ> : min
x∈D f̃<P,γ>(x). (22)

The two smoothing parameters in (20),P andγ , serve two different roles. As
P becomes smaller than six, the function becomes smoother and the basin around
its minimizer becomes broader. Figure 1.1 illustrates this, showing the potential
between two atoms for different values ofP while γ is fixed at zero. The values
of the function near the equilibrium distance of one clearly are reduced asP de-
creases. However, the function value still goes to infinity as the distance approaches
zero.

The smoothing parameterγ has the effect of removing the pole from the
Lennard-Jones potential. Figure 1.2 shows the smoothed function for various val-
ues ofγ , with P = 6 in all cases. This figure illustrates that the y-intercept of the
smoothing function,p̃(0, P, γ ), decreases asγ increases. In addition, increasing
γ reduces the values of the function forr < 1, but has minimal effect forr > 1.
The relation betweenγ andp̃(0, P, γ ) can be easily obtained from Equation (20)
and is given by

p̃(0, P, γ ) = 1

γ 2
− 1. (23)
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Figure 1a. Potential energy curves between two atoms on different settings of P atγ = 0.0.

Figure 1b. Potential energy curves between two atoms on different settings of P atγ = 0.0.

Figure 1c. Potential energy curves between two atoms on different settings of P atγ = 0.0.
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Figure 2. Pairwise potential energy curves on different settings for spatial averaging smooth-
ing function families. (a) Diffusion Equation Method, (b) Effective Energy Transformation
Scheme.

It should be noted that the relation (23) is not a function ofP and thatp̃(0, P, γ )
approaches -1 asγ approaches infinity. In addition, whenγ > 0 andP > 1,
Equation (20) has a zero derivative atr = 0. This implies that the complete
smoothed function given by (21) is continuously differentiable. Figure 1.3 clearly
illustrates the independence of the y-intercept upon the parameterP , as well as the
zero derivative atr = 0.

There are four significant differences between the proposed smoothing func-
tions and the spatial averaging smoothing functions. First, the proposed formula
(20) is cheaper to evaluate. This is important for molecular configuration global
optimization problems, since energy functions may be evaluated hundreds of thou-
sands or millions of times. Compared to the diffusion equation method (13), the
proposed formula only contains one power function but (13) has three exponen-
tial function evaluations. On the other hand, the effective energy transformation
scheme evaluates (18) through interpolating a pre-computed table which involves
considerably more computation per value ofr than (20). In addition, for large
global optimization problems, the pre-computed table must be expanded to cover
larger distance,r, and more smoothing levels,λ. The table then consumes more
memory space as the problem size grows larger.

The second difference is that the proposed pairwise formula’s minimum does
not change location as its smoothing parameter varies. It is fixed atr = 1 and the
value is−1 in (20). Due to the integration, the spatial averaging technique shifts the
location and the value of the minima in the pairwise potential. The curves of two
spatial averaging function families are shown in Figure 2. This figure implies that
the distance between atoms of optimal configuration of the spatial averaging func-
tion at different smoothing levels will grow larger. This characteristic will affect
the use of spatial averaging smoothing schemes, particularly by making trajectory
tracking require smaller steps in the smoothing parameter space. In addition, for the
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effective energy transformation scheme, one must be sure that the pre-computed
table covers sufficient distance for all the smoothing levels that are used.

Thirdly, the proposed smoothing technique transforms the Lennard-Jones po-
tential without special treatment of the pole. In contrast, the diffusion equation
method must use a Gaussian series approximation and the effective energy trans-
formation scheme has to truncate the Lennard-Jones potential more directly to
perform the integration. Note that Figure 2(a) shows a large difference between the
potential of diffusion equation method att = 0 and the Lennard-Jones potential.
The difference is mainly from the third approximation term in function (10).

Finally, the proposed method as described so far is restructed to the Lennard-
Jones potential, while the diffusion equation method and effective energy trans-
formation scheme are quite general. However, the new approach taken in Equation
(20) can readily be extended to other functions of(1/r), such as the electrostatic
term in empirical potentials for proteins. As we mention briefly in Section 6, this
property has enabled us to apply our new analytic smoothing approach to general
protein conformation problems (see [1]).

In [21], we have investigated how the shapes of our new family of smoothing
functions compare with the class of functions in Figure 2(b) from the effective
energy transformation scheme. If we allow a domain scaling to make the locations
of the minimizers the same, we show that there exist parameter choices in (20)
for which (20) and the functions from Figure 2(b) (using values ofλ considered
in papers on this approach) are nearly indistinguishable over the range of values
of r for which the functions are evaluated in practice. The functions do differ for
values ofr very close to 0. We would not expect our class of functions to be as
similar in a graphical sense to the set of diffusion equation approximations shown
in Figure 2(a), since the latter differs so significantly from the true Lennard-Jones
potential ast → 0. Still, in the Section 5 we will see that our new family and the
diffusion equation family behave quite similarly in trajectory-tracking experiments
on a Lennard-Jones cluster.

While making the present study, we discovered a recent paper [18] that proposes
a smoothing function quite similar to (20). This smoothing function replacesr in
(1) with (r + α)/(1+ α), so the smoothing function is written as

p(r) =
(

1+ α
r + α

)12

− 2 ∗
(

1+ α
r + α

)6

. (24)

whereα is some positive constant. One major difference between (20) and (24)
is the ability to change the parameterP . As discussed in this section, (20) can
broaden the basin around the minimizer by reducingP . Another difference is that
(24) does not yield zero derivative atr = 0 as (20), which creates a discontinuity
in the derivative of the smoothing function atr = 0.
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4. Behaviors of Minimizer Trajectories in Smoothed Space

It is important to understand the effects of the smoothing techniques on the ob-
jective functions, since the surface of smoothed functions can be dramatically
different from the original functions. To explore the behaviors of smoothing tech-
niques, minimizer trajectory tracking is a useful tool, since it is the behaviors of
these minimizers in smoothing space which are important in global optimization.
The behaviors of minimizer trajectories can directly affect the approaches and
performances of global optimization algorithms that utilize smoothing techniques.

As mentioned in Section 1, varying the smoothing parameters gives rise to
trajectories in the space of the smoothing parameters that link minimizers of func-
tions with different amounts of smoothing. Each point on a given trajectory is a
minimizer of some smoothed problem. These trajectories can be denoted as

traji : S → D. (25)

Since each point on a given trajectory is a minimizer, the points on the trajectory
satisfy

∇x f̃s(traji(s)) = 0. (26)

In practice, once one has found a local minimizer for a given value of the smooth-
ing parameter(s), one can trace its trajectory by slowly changing the smoothing
parameter and conducting a series of local minimizations. Each local minimization
uses the minimizer from the previous value of the smoothing parameter(s) as the
starting point for minimizing the function with the new smoothing parameter value.

In the best case, the trajectory containing the global minimizer of highly
smoothed problems will also contain the global minimizer of the original problem.
In this case, by finding the global minimizer of a very smooth problem (which
hopefully is fairly easy to do), and then tracking this trajectory through a careful se-
quence of local minimizations on less and less smoothed functions, one can locate
the global minimizer of the original problem. However, this relationship between
the global minimizer of very smoothed problems and the global minimizer of the
original problem does not always exist. In order to understand the incorporation of
smoothing in global optimization, one needs to be aware of the possible pitfalls in
trajectory tracking.

The global minimizer of the original problem can fail to lie on the same tra-
jectory as the global minimizer of very smoothed problems for one of at least
four reasons. The most important of these is that the order of minimizers may
change as the function becomes smoother, due to the function value surface being
transformed by different amounts in different regions. For example, as the function
is smoothed by spatial averaging smoothing techniques, a low minimizer that is
surrounded by very high barriers may become a higher minimizer than an initially
somewhat-higher minimizer that is surrounded by much lower barriers. The traject-
ories containing these minimizers willflip ordersat some point. If the trajectory
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containing the global minimizer of the original problem flips its order with another
trajectory, then tracking the global minimizer of a very smooth problem back will
not lead to the global minimizer of the original problem. The experiments in this
paper indicate that this situation appears to be common.

Secondly, any trajectory may terminate beyond a given set of smoothing para-
meter values. This occures when a minimizer is smoothed away beyond these
smoothing parameter values. For the trajectory of the global minimizer of the
original problem, it is easy to see that this condition can only be present if the
trajectory has first flipped its order as described previously. When such termination
occurs, the process of tracking to smoother objectives will generally jump to a
different trajectory and continue. If the trajectory from the global minimizer of the
original objective terminates in this way, then the global minimizer cannot be found
by continuous tracking from any smoother minimizer.

The third possibility is the analogous termination of the trajectory from a
smoothed minimizer as the parameters make the function less smooth. This be-
havior, which we believe to be less common, occurs when smoothing introduces a
new minimizer at some point. The experiments in this paper verify that this may
occur. If this happens for a trajectory coming from the global minimizer of a highly
smoothed problem, no trajectory can lead continuously to the global minimizer of
the original problem. Finally, two trajectories may merge as the function becomes
more smoothed, if two minimizers merge. This behavior appears to be much less
common, and can be treated as a variant of trajectory termination.

Related behaviors to those just described have been reported in the paper [17] on
state trajectories. State trajectories are intended to capture the transitions between
valleysof minimizers in the smoothing hyperspace. Three types of patterns are
described in [17]:strong scaling,weak scaling, andpoor scaling. These correspond
to the abilities of trajectories of smoothed problems in the formulation of [17]
to lead to the original global minimizer, with strong scaling corresponding to the
‘best’ case mentioned above.

In the next section, a series of trajectory tracking experiments is presented.
These experiments are based on Lennard-Jones cluster problems. The results show
the behaviors discussed in this section commonly appear in different sizes of the
Lennard-Jones problems. For example, Figure 5 will illustrate that each of the
first three types of behaviors mentioned above occurs in a 30 atom Lennard-Jones
cluster problem.

5. Trajectory Tracking Experiments

We now present results of trajectory tracking experiments with Lennard-Jones
clusters of 9, 30 and 34 atoms, that are designed to explore the behaviors of the
proposed new smoothing techniques. From the range of experiments in this section
we are able to make meaningful observations about smoothing techniques for mo-
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lecular configuration problems in general, and about our new family of smoothing
functions.

We also present results of trajectory tracking experiments on the 9 atom problem
using the spatial averaging smoothing techniques discussed in Section 2, which
are intended to compare the spatial averaging techniques with the proposed new
method. Among these experiments, the results from the 9 atom problem are most
important. The problem size, nine, is small enough to find and track all of its
minimizers and is complex enough, at the same time, to yield all the interesting
behaviors discussed in Section 4; and allows for meaningful comparisons between
smoothing techniques.

First we describe our experimental methodology. Each of our trajectory tracking
experiments starts by using a stochastic global optimization program to find a set
of minimizers with the original Lennard-Jones function. This global algorithm,
described in [2], incorporates a local optimization routine to determine local min-
imizers. The algorithm is designed to iteratively identify better configurations from
known configurations. The algorithm can obtain a large number of minimizers
through its search procedure, but it does not perform a systematic search for the
all minimizers of the global optimization problems. It is believed that this program
finds all the minimizers of the 9 atom problem, as discussed later, and all 20 min-
imizers found are used in the trajectory tracking experiments. The 30 and 34 atom
problems each have a huge number of minimizers and only a tiny portion of the
minimizers in each problem are used in the trajectory tracking experiments. Due to
the characteristics of the global optimization algorithm, however, most minimizers
used in both experiments are low energy minima. And, in both problems the best
known minimizers are found and used.

After obtaining the minimizers, a tracking procedure is performed on each of
these minimizers. Each minimizer is tracked carefully through different values of
the smoothing parametersP and γ for the proposed method (ort for diffusion
equation method andλ for the effective energy transformation scheme). The track-
ing procedure for our new function is a series of local minimizations with objective
function (21) through a sequence of smoothing parameter sets,

{(P0, γ0), (P1, γ1), (P2, γ2), ...};
where(P0, γ0) = (6,0), (Pi+1, γi+1) = (Pi−δP, γi+δγ ), δP andδγ are constant
step sizes. The result of a local optimization at smoothing level(Pi, γi) is used as
the initial point of next local optimization at smoothing level(Pi+1, γi+1). Ana-
logous procedures are used for the spatial averaging smoothing families. The local
minimizations were performed using the BFGS method of the UNCMIN package
[19]. Great care was taken to assure that the step sizes in the smoothing parameter
space are small enough that the tracking procedure is stable. If the step size is
too large, the tracking process may “jump” off of the current trajectory to another
trajectory due to the large change in the potential energy landscape. A step size
of 10−3 was used for bothδP and δγ in these experiments. In this procedure,
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trajectory terminations can be identified by seeing that two or more trajectories
merge as the parameters become smoother.

Finally, a reverse tracking procedure is performed on the minizers which survive
through the previous (forward) tracking procedure. This reverse tracking proced-
ure, identifies which original minimizerssurvivethrough the smoothing process.
Additionally, new trajectories that emerge in the forward smoothing process can be
identified in the reverse process, by locating trajectories that merge with others as
the parameters move to the less smooth direction. However, it is important to note
that this procedure only finds new trajectories when original trajectories terminate
and merge into them. That is, the experiments are not designed to explore the entire
smoothed space to find all trajectories of minimizers. This implies that there might
be more trajectories created than the numbers of new trajectories shown in the
experiments. Still, experiments on 30 and 34 atoms do reveal this type of behavior.

5.1. EXPERIMENTS ON THE9 ATOM LENNARD-JONES PROBLEM

We first tried to understand the smoothing ability of the new function family. Our
first experiment tracked all minimizers of a 9 atom Lennard-Jones problem to
various smoothing parameter combinations. For the original Lennard-Jones prob-
lem, we were surprised to find twenty distinct minimizers, instead of the eighteen
minimizers that are reported in [11] and have often been cited in the literature. This
demonstrates the difficulty of solving the Lennard-Jones problem comprehensively.
The reason the 9 atom cluster was chosen is that it is the smallest cluster that has
enough minimizers to lead to a rich set of experiments.

For different values of the smoothing parameters, the number of the original
trajectories of the 9 atom problem that still exist at specific smoothing level is recor-
ded in Table 1. The steady reduction in the number of minimizers shown in Table
1 clearly shows that the new smoothing function (21) effectively smoothes the
Lennard-Jones problem. The experiment also demonstrates the transitions of tra-
jectories through smoothing parameter space. For example, four trajectories have
either terminated or merged with other trajectories between(P = 6, γ = 0.0) and
(P = 5, γ = 0.0), or between(P = 6, γ = 0.0) and(P = 6, γ = 0.1). Once a
certain level of smoothing is reached or exceeded, only one minimizer is left, and
all remaining trajectories have terminated.

Most importantly, however, Table 1 clearly illustrates one of the biggest lim-
itations of the smoothing approach –order flips. This means that the orders of
trajectories can change through smoothing parameter space. That is, at a given
smoothing level, a trajectoryA can have a higher smoothed minimizer than a tra-
jectoryB, even though the initial unsmoothed minimizer that started the trajectory
A had a lower function value than the unsmoothed minimizer that started the tra-
jectory B. In the worst case, the global minimizer’s trajectory can drop its order
dramatically as it is smoothed. If this happens, this means the global minimum can
not be found by simply tracking the lowest minimizers of very smoothed prob-
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Table 1. Number of trajectories with different values of smoothing parameters. A number
with bold type denotes that the trajectory of original global minima is no longer global under
the smooth setting.

γ f(0) P = 6.0 P = 5.0 P = 4.0 P = 3.0 P = 2.0

0.0 inf 20 16 11 6 4

0.1 99.0 16 15 9 6 1

0.2 24.0 16 12 7 5 1

0.3 10.1 16 10 6 4 1

0.4 5.25 14 8 5 1 1

0.5 3.0 11 6 5 1 1

0.6 1.78 10 5 2 1 1

0.7 1.04 8 5 1 1 1

0.8 0.56 6 3 1 1 1

0.9 0.23 5 1 1 1 1

lems backwards. In Table 1, the smoothing levels where the global minimizer’s
trajectory is no longer the lowest have been denoted in boldface. It is seen that for
this problem, this phenomenonalwaysoccurs by the time there are five or fewer
trajectories remaining.

A more detailed analysis of the results of the 9 atom trajectory tracking exper-
iment reveals that the trajectory of the unsmoothed global minimizer first drops in
order to second place once a certain level of smoothing is reached. Then, at some
greater value of smoothing, this trajectory terminates and local minimizations from
it jump into the current smoothed global minimizer’s trajectory. This trajectory is
the one that originates from the second lowest minimizer of the original problem.
A reverse tracking procedure has been performed on the only minimizer remain-
ing at (P = 2, γ = 0.9). It is not surprising that the reverse tracking procedure
leads to the second lowest minimizer of the original problem, instead of the global
minimizer. This simple problem illustrates that if the global minimizer flips its
order, the global minimum can not be found by only reverse tracking the best
smoothed minimizer, and that if the global minimizer’s trajectory terminates, the
global minimum can not be found by reverse tracking from any minimizer of a very
smoothed problem.

5.2. EXPERIMENTS ON LARGE PROBLEMS

Next, we examined the order flip phenomenon on a larger problem size. First, the
Lennard-Jones problem with 30 atoms was tested. This size was chosen somewhat
arbitrarily as a moderate sized cluster. We began by locating 1,043 of the lowest
minimizers for this problem, including the global minimizer, using our global op-
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Figure 3. Order flipping experiment on the 30-atom problem: (a) 1,043 the Lennard-Jones
minimizers are tracked to smoothing levelP = 4, γ = 0.2. The horizontal axis represents
the trajectory’s order in the Lennard-Jones potential, and the vertical axis represents the tra-
jectory’s order in the smoothing function,̃f〈4.0,0.2〉. (b) The first twenty minimizers of Figure
3(a).
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Figure 4. Order flipping experiment with reverse trackig on the 30-atom problem: (a) 557
minimizers of smoothing levelP = 4, γ = 0.2 are tracked back to the Lennard-Jones
potential. The horizontal axis represents the trajectory’s order in the Lennard-Jones potential,
and the vertical axis represents the trajectory’s order in the smoothing function,f̃〈4.0,0.2〉. (b)
The first twenty minimizers of Figure 4(a).
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Figure 5. Trajectories of selected minimizers for 30 atom problem.

timization algorithm discussed in the next section. Unlike the 9 atom problem, it is
not feasible to find all the minima for the 30 atom problem. Indeed, according to
[11], we have found only a tiny portion of all the minimizers. All 1,043 minimizers
were tracked to the smoothing level (4.0,0.2) by the same procedure discussed
earlier in this section. The order flip graphs are shown in Figure 3(a) and 3(b).

The order flips in the 30 atom problem are much more extreme than the flips in
the 9 atom problem. This experiment clearly demonstrates that order flips among
trajectories is a significant issue when using smoothing. Figure 3(b) shows that
the trajectory of the original global minimizer has dropped down to third place by
smoothing level (4.0,0.2), More dramatically, the minimizers in fourth and sixth
to eighth positions in the original function are all below twentieth place by this
smoothing level. Similarly, the trajectories which are in seventh to tenth positions
for smoothing level (4.0,0.2) were all below twentieth place for the original func-
tion. This means that if we run a global optimization algorithm at this smoothing
level and then simply track the trajectories of the best smoothed minimizers back to
the original function, we will miss some of the best Lennard-Jones minimizers and
will find several poor Lennard-Jones minimizers. Furthermore, since the original
global minimizer has already dropped in order, it is likely that its trajectory will
terminate at some further smoothing level and that if we start reverse tracking from
that level we could miss the original global minimizer entirely.
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In Figure 3, almost half of the minimizers’ trajectories have terminated and
collapsed into other minimizers’ trajectories. From the data in these figures, we
cannot tell which original trajectories have terminated and which have led directly
to the minimizers of the smoothed problem, since there is no guarantee that the
trajectory with the lower original minimizer is the one that exists longest. In order
to tell exactly which original minimizers survived through the tracking process, we
have conducted a reverse tracking procedure on each of the 557 distinct smoothed
minimizers remaining in the 30 atom problem at smoothing level (4.0,0.2). The res-
ult is shown in Figure 4. By removing the minimizers whose trajectories terminate
during forward tracking, Figure 4(a) clearly confirms the phenomenon of order flip-
ping in the smoothed 30 Atom Lennard-Jones problem. That is, the reverse tracking
experiment also produces a multitude of large order flips. In addition, Figure 4(b)
shows that the same pattern of flips is observed for the lowest minimizers in the
reverse tracking experiment as in the forward tracking experiment. Taken together,
these experiments indicate that order flips are likely to be an important issue to
consider in using smoothing in global optimization algorithms.

Another interesting observation from the reverse tracking experiment is that
some trajectories terminate during the reverse tracking process. In this experiment,
18 of the 557 trajectories terminate before the original problem is reached. This
termination as the problem becomes less smooth confirms one of the types of
behavior of smoothing trajectories that was mentioned in Section 4, and implies
the emergence of new trajectories as the problem becomes smoother. After such
a trajectory terminates during reverse tracking, the tracking procedure will fall to
another, lower trajectory. This behavior is far less common in the experiments than
trajectories terminating during forward tracking, since it occurs only when a new
minimizer emergesas the function becomes smoother, whereas smoothing tends
to reduce the number of minimizers overall. A sampling of trajectories that shows
all three behaviors – order flip, trajectory termination in the forward tracking, and
trajectory termination in the reverse tracking – for the 30 atom problem is given in
Figure 5.

Next, we conducted the same experiments for the 34 atom Lennard-Jones prob-
lem as for the 30 atom problem. The 34 atom problem appears to be one of the most
difficult Lennard-Jones problems among the first 75; the global minimizer, which
has an energy value of−150.045, appears to be in a much narrower and more
isolated basin of attraction than the second lowest minimizer with energy value
−149.997. For this problem we began by locating 1288 of the lowest minimizers
and tracking them to smoothing level (4.0, 0.2), resulting in 494 distinct minimizers
at this smoothing level. Then we tracked these 494 minimizers in reverse back to
the original Lennard-Jones function, resulting in 461 minimizers. The correspond-
ence between the unsmoothed and smoothed minimizers when tracked in these
two directions is shown in Figures 6a and 6b. These figures show that the order flip
phenomenon is even more pronounced for this problem than for the 30 atom prob-
lem, and is really quite extreme. Table 2 summarizes the results of these tracking
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Figure 6. Order flipping experiment on the 34-atom problem: The horizontal axis represents
the trajectory’s order in the Lennard-Jones potential, and the vertical axis represents the tra-
jectory’s order in the smoothing function,̃f〈4.0,0.2〉. (a) 1288 Lennard-Jones minimizers are
tracked to smoothing level (P = 4,γ = 0.2) are tracked back to corresponding Lennard-Jones
potential minimizers.
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Table 2. Results of tracking best 20 Lennard-Jones minimizers for 34 atom problem to minim-
izers of smoothing level (P = 4.0, γ = 0.2), and results of tracking smooth minimizers that
lead back to best 20 Lennard-Jones minimizers.
Trajectory tracking status: ‘Jump’ - trajectory terminates and falls into other trajectory. ‘Cont’
- trajectory is tracked to smoothing level (4.0,0.2) without termination. ‘None’ - did not find
trajectory leading to specified Lennard-Jones minimizers.

Best 20 of Best 20 LJ min. Smooth min. @ (4.0,0.2)

1288 → Smooth min. @ (4.0,0.2) → Best 20 LJ min.

original Trajectory Final Order in Trajectory Order in

Lennard-Jones tracking smoothed smoothed tracking smoothed

minimizers status minimizer potential status minimizers

1 −150.044528 Jump −215.667165 135 Jump 241

2 −149.997007 Jump −216.732431 27 Jump 381

3 −149.921622 Cont −215.300955 205 Cont 205

4 −149.886921 Cont −214.933377 292 Cont 292

5 −149.795387 Cont −215.088910 257 Cont 257

6 −149.780940 Jump −218.359634 3 None

7 −149.672121 Cont −218.390471 2 Cont 2

8 −149.494653 Jump −216.732431 27 None

9 −149.482330 Cont −215.103792 250 Cont 250

10 −149.470798 Jump −218.359634 3 None

11 −149.434941 Cont −214.873379 305 Cont 305

12 −149.223885 Cont −215.060548 267 Cont 267

13 −149.162201 Jump −214.844140 307 None

14 −149.095462 Jump −215.300955 205 None

15 −149.093101 Cont −215.427124 180 Cont 180

16 −149.091680 Jump −215.101311 252 None

17 −149.082624 Cont −213.391740 483 Cont 483

18 −149.058111 Jump −216.732431 27 None

19 −149.054405 Cont −213.646593 479 Cont 479

20 −149.010289 Cont −219.480360 1 Cont 1

experiments for the best minimizers of the unsmoothed problem. For each of the
twenty lowest Lennard-Jones minimizers, after tracking to the smoother function,
the objective value of the smoothed minimizer reached is shown in column 4 and
its order (among the 494 found)in column 5. In column 3, the designationJump
indicates the trajectory of the unsmoothed Lennard-Jones minimizer terminated,
and the tracking procedure jumped to another trajectory, whileCont indicates a
single continuous trajectory was followed. It is seen that almost all of the 20
lowest Lennard-Jones minimizers, including the global, tracked to relatively poor
smoothed minimizers. In the reverse tracking from the 494 smoothed minimizers,
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we determined which of these minimizers led to one of the best twenty Lennard-
Jones minimizers. For each of these best 20, column 7 gives the order of the lowest
smoothed minimizer from which reverse tracking led to it. If the trajectory from
the smoothed minimizer terminated during reverse tracking, and the tracking pro-
cedure jumped to another trajectory, column 6 saysJump; if the trajectory went all
the way, the entry isCont. The entryNonemeans that no smoothed minimizer was
found that would track to that unsmoothed minimizer. It is seen from column 7 that
only 2 of the 20 lowest smoothed minimizers lead to any of the best 20 unsmoothed
minimizers via reverse tracking, and that the 241st lowest smoothed minimizer is
the best one that leads back to the global minimizer, though with a trajectory jump.
Thus, reverse tracking 20 lowest smoothed minimizers we found would not find
the global minimizer, and would find only two of the best 20.

5.3. COMPARISON WITH SPATIAL AVERAGING METHODS

Finally, we tried to compare the proposed smoothing techniques with the two
spatial averaging smoothing techniques, the diffusion equation method and the
effective energy transformation scheme, which were discussed in Section 2. The
9 atom problem is again used in this experiment. With only a handful of minizers,
it is possible to perform detail comparisons. As in the 30 and 34 atom experiments,
we tracked each of the original twenty minimizers to some smoothing level for each
of the three smoothing methods. However, the tracking procedure is slightly dif-
ferent from the previous experiments. After every forward tracking step, a reverse
tracking back to the previous smoothing parameter value is taken immediately. The
result is compared to the minimizer in previous step. With this procedure, forward
jumps between trajectories can be immediately identified when the reverse step
produces a different minimizer from that in the previous step. If the minimizer
identified in the reverse step is different from all originally tracked minimizers
in previous smooth parameter value, we can conclude that the original trajectory
terminates and falls into a newly emerged trajectory.

There is no clear way to define equivalent smoothing levels among different
smoothing methods. In this experiment, for each smoothing method, we merely
tracked the trajectories to a smoothing level where only two trajectories are left. For
this problem, this level is(P = 4.0, γ = 0.7) for the proposed new method, and
t = 5 for the diffusion equation method. For the effective energy transformation
scheme, we tracked minimizers up toλ = 4 which is considered a very smooth
level in the context of [6] and [7], but only four trajectories terminated. Graph-
ical analysis of the pairwise potential function shows that this is because even for
highλ values, the effective energy transformation scheme with the parameters and
software supplied by [26] does not smooth the Lennard-Jones function much. In
fact, the well of the function is slightly narrower forλ = 4 then forλ = 0 once a
rescaling is applied so that the minimizers of the pairwise potentials are the same.
The reason for this behavior seems to be the high cutoff value used in [6, 7] and [26]
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Figure 7. The 9-atom trajectory tracking from (6.0,0.0) to (4.0,0.7) of the proposed method.
(a) Order Flipping Diagram. At each smoothing step, the trajectories are reordered by their
function values at that smoothing step. The order flipping is show as crossover on trajectories.
(b) Trajectory Termination Diagram. The trajectories are arranged in their original order with
new trajectories numbered above 20.
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Figure 8. The 9-atom trajectory tracking fromt = 0 to t = 5 of the diffusion equation
method. (a) Order Flipping Diagram. At each smoothing step, the trajectories are reordered
by their function values at that smoothing step. The order flipping is shown as crossover on
trajectories. Only 19 trajectories in the diagram, since one is already merged att = 0. (b)
Trajectory Termination Diagram. The trajectories are arranged in their original order with
new trajectories numbered above 20.
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Figure 9. The 9-atom trajectory tracking fromλ = 0 to λ = 4 of the effective energy
transformation scheme. Order Flipping Diagram. At each smoothing step, the trajectories are
reordered by their function values at the smoothing step.

for the effective energy transformation scheme in the experiment; see function (19).
The large positive values near the zero distance have a strong effect on the spatial
averaging process and prevent significant smoothing. This seems to mean that the
cutoff value would need to be lowered to obtain the desired smoothing effect.
However, we did not attempt to repeat the experiment with different parameters
than those supplied by the authors.

Figure 7 shows results of the experiment for the new smoothing function, and
Figure 8 contains diagrams for the diffusion equation method. Each figure contains
two diagrams. The first diagram presents how trajectories change their orders at
each smoothing level. The second diagram, on the other hand, depicts how tra-
jectories terminate and fall into other trajectories. In addition, the second diagram
shows some new trajectories which the original trajectories fall into.

Figures 7 and 8 show qualitatively very similar behaviors between the proposed
method and the diffusion equation method. First, at the end of tracking procedure,
the 2nd and 15th trajectories survived in both methods, shown in Figure 7(b) and
Figure 8(b). Secondly, in both methods, the global minimizer’s trajectory first flips
its order, then terminates and jumps to the second best minimizer’s trajectory.
Furthermore, both methods introduce some significant number of order flips as
shown in Figure 7(a) and Figure 8(a). Finally, both methods create some new
trajectories along the smoothing process, which are labeled as 21 and 22 in traject-
ory termination diagrams. In Figure 7(b), the 20th trajectory first jumps to a new
trajectory numbered as 21 in the figure. It then immediately jumps to yet another
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new trajectory numbered as 22. Figure 8(b) shows both the 16th and 20th traject-
ories terminate and jump to new trajectories. The many similarities between the
two smoothing approaches in the 9 atom cluster lead us to believe that the spatial
averaging techniques would give similar results to the new smoothing method on
other problems. Most importantly, the spatial averaging techniques also introduce
some significant order flips in the course of the smoothing procedure.

By observing Figure 8(a) carefully, one will notice that there are only 19 minim-
izers att = 0. That is because the 12th minimizer has already merged with the 5th
minimizer. This is caused by the approximation (10) used in the diffusion equation
method. As shown in Figure 2(a), the function is quite smooth even att = 0.
This means there is a significantgapbetween the true Lennard-Jones potential and
the smoothed function. In Figure 7(a), it is seen that trajectory 12 terminates and
merges into trajectory 5 almost immediately, far before any other merges. This is
another similarity between the behaviors of the two methods.

Figure 9 shows the results for the effective energy transformation scheme. Only
four trajectories terminate and merge into other trajectories. All four terminations
happen beforeλ = 1. However, in the experiment, the scheme also introduces some
order flips. Notably, the 12th minimizer’s trajectory which also quickly terminates
and merges into the 5th minimizer’s trajectory as the other two methods.

From these results, we expect that behaviors like order flips and trajectory
termination are shared by different smoothing techniques, and that they may be
common in different problems. An important lesson from these experiments is
that one should not optimistically assume that the global minimizer of a smoothed
function will directly lead to the global minimizer in the original function, or even
that reverse tracking a significant number of the lowest minimizers of a smoothed
function will lead to the global minimizer of the original function. That is, smooth-
ing followed by the trajectory tracking is not adequate as a general method for
solving global optimization problems arising from molecular configuration.

6. Summary and Future Research

In this paper, a new family of functions for smoothing the Lennard-Jones potential
energy function is introduced. The smoothing functions naturally remove the pole
from the Lennard-Jones potential and widen the basin of attraction of its minimizer,
without changing the location or energy value of the minimizer. Also, they are easy
to evaluate.

The experiments in this paper carefully examine the properties of the new
smoothing method and general behaviors of smoothing techniques. They also com-
pare the new function family with two spatial averaging smoothing techniques, the
diffusion equation method and the effective energy transformation scheme. They
demonstrate that the proposed smoothing function family effectively reduces the
number of minima in the Lennard-Jones problems with different sizes. They also
indicate that the proposed method has similar smoothing behaviors to the spatial
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averaging approach. Thus it may be advantageous to use due to its lower cost and
ease of implementation.

Our experiments also show that smoothing techniques can introduce some po-
tentially undesirable behaviors into smoothed functions. The undesired behaviors,
which appear to be are shared among different families of smoothing functions, are
order flips, termination of trajectories, and emergence of new trajectories. These
behaviors show that an algorithm that simply finds the global minimizer of a very
smoothed problem and tracks it (or possibly the lowest few minimizers) back to
the unsmoothed problem cannot be expected to locate the global minimizer of the
unsmoothed problem in general. Some more sophisticated and robust algorithms
need to be developed in order to take advantage of smoothing techniques in global
optimization. Such algorithms should able to accommodate the ill behaviors of
smoothing techniques discussed in this paper.

The larger goal of this research is to apply the types of techniques described
in this paper to more complex molecular conformation problems, including the
protein folding problem. The algebraic smoothing technique described in this paper
can be generalized to other functions (usually with poles) that are likely to benefit
from smoothing, such as electrostatic forces or attractive/repulsive forces given
by different formulas than the Lennard-Jones potential. Currently, as discussed in
[1], we are exploring another very similar formula which can smooth both the
Lennard-Jones potential and electrostatic potential simultaneously.

f̃<P,γ>(x) =



(
1+ γ
r2
ij + γ

)P
− 2

(
1+ γ
r2
ij + γ

)P/2
for Lennard-Jones potential

qij

σij

√
1+ γ
r2
ij + γ

for electrostatic potential

(27)

In addition, we have developed an approach, based on [2], which utilizes the smooth-
ing technique to dramatically reduce the number of minima at early stages, but does
not rely solely on trajectories to find the global minima at final stages. Instead,
minimizers from each smoothed stage serve as starting configurations for a global
minimization algorithm at each successive, less smoothed stage. This approach
has been recently applied to protein polyalanine problems with the new smoothing
functions (27). Some encouraging results have been obtained and show the advant-
ages of using the smoothing technique in global optimization. These results will be
reported in a forthcoming paper [1].
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